Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Thromb Haemost ; 123(11): 1034-1041, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37236229

RESUMO

BACKGROUND: Hemophilia A (HA) is characterized by decreased or absent factor VIII (FVIII) activity. Current FVIII assays are based on clotting time and thus only provide information about the initiation of coagulation. In contrast, thrombin generation assays (TGAs) can be used to measure the full coagulation spectrum of initiation, propagation, and termination that provide information on the whole course of thrombin generation and inhibition. However, the commercially available TG kits lack sensitivity for measurements of hemophilia plasma within lower FVIII ranges, which is essential for explaining differences in bleeding phenotypes in hemophiliacs at clinically low levels of FVIII. AIMS: Optimization of the TGA for measurements of low FVIII levels in severe HA patients. METHODS: TGA measurements were performed in severe HA pooled plasma (n = 10). Investigations of several preanalytical and analytical variables of the assay were performed in a stepwise process and adjusted based on sensitivity toward intrinsic coagulation activation. RESULTS: TGA initiated by tissue factor (TF) alone at varying concentrations was unable to significantly differentiate between FVIII levels below 20%. In contrast, TGA activation with low concentrations of TF in presence of FXIa appeared to be highly sensitive for FVIII changes both in high and low ranges. In addition, a representative TGA curve at trough levels could only be produced using the dual TF/FXIa TGA. CONCLUSION: We propose a critical optimization for the setup of the TGA for measurements in severe HA plasma. The dual TF/FXIa TGA shows increased sensitivity, especially in lower FVIII ranges, which allows for better individual characterization at baseline, prediction of interventions, and follow-up.


Assuntos
Hemofilia A , Hemostáticos , Humanos , Fator VIII/farmacologia , Trombina , Fator XIa , Hemofilia A/diagnóstico , Testes de Coagulação Sanguínea , Tromboplastina
2.
Front Cardiovasc Med ; 9: 929284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277784

RESUMO

Background: COVID-19 associated coagulopathy (CAC) is associated with an increase in thromboembolic events. Current guidelines recommend prophylactic heparins in the management of CAC. However, the efficacy of this strategy in the intensive care population remains uncertain. Objective: We aimed to measure thrombin generation (TG) to assess CAC in intensive care unit (ICU) patients receiving thromboprophylaxis with low molecular weight heparin (LMWH) or unfractionated heparin (UFH). In addition, we performed statistical modeling to link TG parameters to patient characteristics and clinical parameters. Lastly, we studied the potency of different anticoagulants as an alternative to LMWH treatment in ex vivo COVID-19 plasma. Patients/Methods: We included 33 patients with confirmed COVID-19 admitted at the ICU. TG was measured at least twice over the course of 6 weeks after admission. Thrombin generation parameters peak height and endogenous thrombin potential (ETP) were compared to healthy controls. Results were subsequently correlated with a patient characteristics and laboratory measurements. In vitro spiking in TG with rivaroxaban, dabigatran, argatroban and orgaran was performed and compared to LMWH. Results: Anti-Xa levels of all patients remained within the therapeutic range throughout follow-up. At baseline, the mean (SE) endogenous thrombin potential (ETP) was 1,727 (170) nM min and 1,620 (460) nM min for ellagic acid (EA) and tissue factor (TF), respectively. In line with this we found a mean (SE) peak height of 353 (45) nM and 264 (96) nM for EA and TF. Although fluctuating across the weeks of follow-up, TG parameters remained elevated despite thromboprophylaxis. In vitro comparison of LMWHs and direct thrombin inhibitors (e.g., agratroban, dabigatran) revealed a higher efficacy in reducing coagulation potential for direct thrombin inhibition in both ellagic acid (EA) and tissue factor (TF) triggered TG. Conclusion: In a sub-group of mechanically ventilated, critically ill COVID-19 patients, despite apparent adequate anti-coagulation doses evaluated by anti-Xa levels, thrombin generation potential remained high during ICU admission independent of age, sex, body mass index, APACHE II score, cardiovascular disease, and smoking status. These observations could, only partially, be explained by (anti)coagulation and thrombosis, inflammation, and multi-organ failure. Our in vitro data suggested that direct thrombin inhibition compared with LMWH might offer an alternate, more effective anticoagulant strategy in COVID-19.

3.
Front Cardiovasc Med ; 8: 654174, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981736

RESUMO

Background: Coronavirus Disease 2019 (COVID-19) patients often present with thromboembolic events. In COVID-19 patients, routine hemostatic assays cannot correctly identify patients at risk for thromboembolic events. Viscoelastic testing with rotational thromboelastometry (ROTEM) might improve the characterization of COVID-19-associated coagulopathy. Objective: To unravel underlying coagulopathy and fibrinolysis over time as measured by serial assessment heparin-independent (FIBTEM and EXTEM) and fibrinolysis illustrating (tissue plasminogen activator; tPA) ROTEM assays. Patients/Methods: Between April 23 and June 12, consecutive adult patients enrolled within the Maastricht Intensive Care COVID (MaastrICCht) cohort were included, and a comprehensive set of clinical, physiological, pharmaceutical, and laboratory variables were collected daily. Twice per week, EXTEM, FIBTEM, and tPA ROTEM were performed. Clotting time (CT), clot formation time (CFT), maximum clot firmness (MCF), lysis onset time (LOT), and lysis time (LT) were determined to assess clot development and breakdown and were compared to routine hemostatic assays. Results: In 36 patients, 96 EXTEM/FIBTEM and 87 tPA ROTEM tests were performed during a 6-week follow-up. CT prolongation was present in 54% of EXTEM measurements, which were not matched by prothrombin time (PT) in 37%. Respectively, 81 and 99% of all EXTEM and FIBTEM MCF values were above the reference range, and median MCF remained elevated during follow-up. The ROTEM fibrinolysis parameters remained prolonged with median LOT consequently >49 min and unmeasurable LT in 56% of measurements, suggesting a severe hypofibrinolytic phenotype. Conclusion: ROTEM tests in COVID-19 ICU patients show hypercoagulability and severe hypofibrinolysis persisting over at least 6 weeks.

4.
Thromb Res ; 201: 84-89, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33662799

RESUMO

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection is associated with a clear prothrombotic phenotype. Although the exact pathophysiological mechanisms are not yet fully understood, thrombosis is clearly a highly important in the prognosis and outcome of COVID-19. As such, there is a need for diagnostic analysis and quantification of the coagulation potential in these patients, both at diagnosis and follow-up. Global coagulation assays like thrombin generation (TG) and rotational thromboelastometry (ROTEM) might be suitable in estimating COVID-19 associated coagulopathy and thrombosis risk. Therefore, we aimed at validating both assays for samples with high levels of fibrinogen and in the presence of anticoagulant heparins, such as commonly observed for COVID-19 ICU patients. MATERIALS AND METHODS: Calibrated Automated Thrombography (CAT) was optimized to assess plasma thrombin generation in the presence of heparins. The final conditions with either 10 µg/mL Ellagic acid (EA) or PPP Reagent HIGH (high tissue factor; HPPH) were validated according to the EP5 protocol for within-run and between-run variability. Overall variability was well below 10%. To estimate the influences of heparins and high fibrinogen levels, CAT was performed on spiked plasma aliquots from 13 healthy volunteers. Comparable to the CAT method, tPA-ROTEM was used to validate the effect of high fibrinogen and heparins on clotting time, clot firmness and clot lysis parameters. RESULTS: Our adjusted COVID-19 assay showed a heparin dose dependent decrease in peak height and endogenous thrombin potential (ETP) for both EA and HPPH triggered variants. High fibrinogen did not alter the inhibitory effect of either LMWH or UFH, nor did it influence the peak height or ETP in any of the conditions. The tPA-ROTEM showed a significant prolongation in clotting time with the additions of heparin, which normalized with the addition of high fibrinogen. MCF was markedly increased in all hyperfibrinogenemic conditions. A trend towards increased lysis time and, thus, decreased fibrinolysis was observed. CONCLUSION: Thrombin generation and tPA-ROTEM protocols for measurements in the COVID-19 populations were adjusted and validated. The adjusted thrombin generation assay shows good sensitivity for measurements in heparin spiked plasma. High levels of fibrinogen did not alter the assay or the effectiveness of heparins as measured in this assay. t-PA ROTEM was effective in measurement of both high fibrinogen and heparins spiked samples and was sensitive to the expected relevant coagulant changes by these conditions. No clear fibrinolytic effect was observed in different conditions.


Assuntos
COVID-19 , Trombofilia , Testes de Coagulação Sanguínea , Heparina de Baixo Peso Molecular , Humanos , RNA Viral , SARS-CoV-2 , Tromboelastografia , Trombofilia/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...